
DAWeb 2012/2013

Ruby on Rails

8

8 – DAWeb

Authors

! Authors
! João Moura Pires (jmp@fct.unl.pt)
! With contributions of

− João Costa Seco (jcs@fct.unl.pt)
− Fernando Birra (fpb@fct.unl.pt)

! These slides can be freely used for personal or academic matters
without permission from the authors, as long as this author list is
included.

! The use of these slides for commercial matters is not allowed,
unless authorized from the authors.

2

8 – DAWeb

Bibliography

! Some examples are extracted or adapted from

− Pragmatic Agile Web Development with Rails (4th Edition) by Sam Ruby, Dave
Thomas and David Hanson

− and the book’s site

− http://pragprog.com/

− Reference material is many times based on http://rubyonrails.org/

− http://guides.rubyonrails.org/active_record_validations_callbacks.html

3

8 – DAWeb

Disclaimer

! This lecture(s) do not cover the Ruby programming language.

! See also Recommended readings at the end.

4

8 – DAWeb

Table of content

! The Architecture of Rails Applications

! Sample Application: Depot

! Naming conventions

! Model Validations

! Testing

! Catalog Display: Views

! Cart Creation

5

Ruby on Rails

8 – DAWeb

The Architecture of Rails Applications

6

8 - DAWeb

MVC architectural pattern

! In 1979, Trygve Reenskaug came up with a new architecture for developing interactive

applications. In his design, applications were broken into three types of components:

models, views, and controllers.

! The MVC architecture was originally intended for conventional GUI applications, where

developers found the separation of concerns led to far less coupling, which in turn made

the code easier to write and maintain. Each concept or action was expressed in just one

well-known place.

! See on http://en.wikipedia.org/wiki/Model-View-Controller

! Make the distinction between the MVC architectural pattern and the frameworks that follow

that pattern

! check the list of available web based frameworks

8 - DAWeb

Models, Views, and Controllers

" The model is responsible for maintaining the state of the application. Sometimes

this state is transient, lasting for just a couple of interactions with the user.

Sometimes the state is permanent and will be stored outside the application, often in

a database.

" A model is more than just data; it enforces all the business rules that apply to

that data.

! For example, if a discount shouldn’t be applied to orders of less than $20, the model will

enforce the constraint.

! By putting the implementation of these business rules in the model, we make sure that

nothing else in the application can make our data invalid. The model acts as both a

gatekeeper and a data store.

8 - DAWeb

Models, Views, and Controllers

" The view is responsible for generating a user interface, normally based on data in

the model.

! For example, an online store will have a list of products to be displayed on a catalog

screen. This list will be accessible via the model, but it will be a view that accesses the

list from the model and formats it for the end user.

! Although the view may present the user with various ways of inputting data, the view

itself never handles incoming data.

! The view’s work is done once the data is displayed. There may well be many views that

access the same model data, often for different purposes.

8 - DAWeb

Models, Views, and Controllers

" Controllers orchestrate the application.

! Controllers receive events from the outside world (normally user input), interact with the

model, and display an appropriate view to the user.

8 - DAWeb

Ruby on Rails is an MVC framework !

" Rails enforces a structure for your application:

! You develop models, views, and controllers as separate chunks of functionality, and it

knits them all together as your program executes.

! This knitting process is based on the use of intelligent defaults so that you typically

don’t need to write any external configuration metadata to make it all work.

8 - DAWeb

Ruby on Rails is an MVC framework !

8 - DAWeb

Ruby on Rails is an MVC framework !

1. An incoming request is first sent to a router, which works out where in the

application the request should be sent and how the request itself should be

parsed.

Identifies a particular method somewhere in the controller code.

Context: the application has previously displayed a product catalog page,

and the user has just clicked the Add to Cart button next to one of the

products.

This button posts to http://localhost:3000/line_items?product_id=2, where

line_items is a resource in our application and 2 is our internal id for

the selected product.

8 - DAWeb

Ruby on Rails is an MVC framework !

This button posts to http://localhost:3000/line_items?product_id=2, where

line_items is a resource in our application and 2 is our internal id for

the selected product.

PATH: line_items?product_id=2

METHOD: POST

=========

CONTROLER: lineItemsController

METHOD: create (since the Method is POST)

ARGUMENT: product_id=2

8 - DAWeb

Ruby on Rails is an MVC framework !

2. The create method handles user requests.

3. In this case, it finds the current user’s shopping cart (which is an object managed by

the model).

It also asks the model to find the information for product 2.

It then tells the shopping cart to add that product to itself.

4. Now that the cart includes the new product, we can show it to the user.

The controller invokes the view code, but before it does, it arranges things so that

the view has access to the cart object from the model.

In Rails, this invocation is often implicit; again, conventions help link a particular

view with a given action.

Ruby on Rails

8 – DAWeb

Sample Application: Blog

16

8 - DAWeb

Creating a new rails application

Configure your application’s runtime rules, routes, database, and more

Contains your current database schema, as well as the database migrations.

The only folder seen to the world as-is. Contains the static files and compiled assets.

Unit tests, fixtures, and other test apparatus.

MVC

This will create your development and test SQLite3
databases inside the db/ folder

8 - DAWeb

Running the application

8 - DAWeb

Hello World!

8 - DAWeb

Hello World!

8 - DAWeb

Hello World!

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

Fixtures are a way of organizing
data that you want to test

against; in short, sample data.

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Using scafolding for post entity

8 - DAWeb

Running a Migration

8 - DAWeb

Running a Migration

8 - DAWeb

Running a Migration

8 - DAWeb

Linking pages

The link_to method is one of Rails’ built-in view helpers. It creates a hyperlink
based on text to display and where to go – in this case, to the path for posts.
posts_path is a URL helper.

href=”/posts”

8 - DAWeb

Linking pages

8 - DAWeb

Linking pages

8 - DAWeb

Adding Some Model Validation

http://guides.rubyonrails.org/active_record_validations_callbacks.html#validations-overview

8 - DAWeb

Understanding how it works: Listing All Posts

Post.all returns all of the posts currently in the database
as an array of Post records that we store in an instance
variable called @posts.

8 - DAWeb

Understanding how it works: Listing All Posts

Source of http://posts

8 - DAWeb

Understanding how it works: Listing All Posts

Source of http://posts

8 - DAWeb

Understanding how it works: Listing All Posts

Source of http://posts

8 - DAWeb

Understanding how it works: Creating New Posts

1 - Presenting a form to enter the data

2 - Create the post with the user supplied data

http://posts/new

action="/posts" ... method="post">

8 - DAWeb

Understanding how it works: Creating New Posts

1 - Presenting a form to enter the data

2 - Create the post with the user supplied data

http://posts/1

8 - DAWeb

Understanding how it works: Creating New Posts

1 - Presenting a form to enter the data

2 - Create the post with the user supplied data

8 - DAWeb

Rails Model Support: “Active Record”

" Map database tables to classes. If a database has a table called orders, our

program will have a class named Order.

" Rows correspond to objects of the class. A particular order is represented as an

object of class Order.

" Within that object, attributes are used to get and set the individual columns.

" A set of class-level methods that perform table-level operations. Examples: find,

where, new, etc..

" Instance methods that perform operations on the individual rows. Example:

save.

8 - DAWeb

Rails Model Support: “Active Record”

" Active Record is the ORM from Rails, which includes:

! By relying on convention and starting with sensible defaults, Active Record minimizes

the amount of configuration that developers perform. Table and class naming rules,

PK and FK attributes, etc.

! Active Record supports sophisticated validation of model data, and if the form data fails

validations, the Rails views can extract and format errors.

8 - DAWeb

View and Controller: Action Pack

" In Rails, the view is responsible for creating either all or part of a response to be

displayed in a browser, processed by an application or sent as an email.

" In Rails, dynamic content is generated by templates, which come in three flavors.

The most common templating scheme, called Embedded Ruby (ERb), embeds

snippets of Ruby code within a view document,

" XML Builder can also be used to construct XML documents using Ruby code, the

structure of the generated XML will automatically follow the structure of the code.

" Rails also provides RJS views. These allow you to create JavaScript fragments on

the server that are then executed on the browser. This is great for creating dynamic

Ajax interfaces.

8 - DAWeb

View and Controller: Action Pack

" The Rails controller is the logical center of your application. It coordinates the

interaction between the user, the views, and the model. The controller is also home

to a number of important ancillary services:

! It is responsible for routing external requests to internal actions. It handles people-

friendly URLs extremely well.

! It manages caching, which can give applications orders-of-magnitude performance

boosts.

! It manages helper modules, which extend the capabilities of the view templates without

bulking up their code.

! It manages sessions, giving users the impression of ongoing interaction with our

applications.

Ruby on Rails

8 – DAWeb

Naming Conventions

54

8 - DAWeb

Naming Conventions

" Ruby conventions

! Variable names where the letters are all lowercase and words are separated by

underscores (ex: order_status).

! Classes and modules are named differently: there are no underscores, and each

word in the phrase (including the first) is capitalized (ex: LineItem).

" Rails conventions

! Table names are like variable names. Rails also assumes that table names are always

plural (ex: orders and third_parties).

! Files are named in lowercase with underscores.

8 - DAWeb

Naming Conventions

" Ex: class whose name is LineItem (Ruby convention). Rails would automatically

deduce the following:

" That the corresponding database table will be called line_items. That’s the class

name, converted to lowercase, with underscores between the words and pluralized.

" Rails would also know to look for the class definition in a file called line_item.rb

(in the app/models directory).

8 - DAWeb

Naming Conventions

" Rails controllers have additional naming conventions. If our application has a Store

controller, then the following happens:

! Rails assumes the class is called StoreController and that it’s in a file named

store_controller.rb in the app/controllers directory.

! It also assumes there’s a helper module named StoreHelper in the file

store_helper.rb located in the app/helpers directory.

! It will look for view templates for this controller in the app/views/store directory.

! It will by default take the output of these views and wrap them in the layout template

contained in the file store.html.erb or store.xml.erb in the directory app/

views/layouts.

8 - DAWeb

Naming Conventions

8 - DAWeb

Naming Conventions

" In normal Ruby code you have to use the require keyword to include Ruby source

files before you reference the classes and modules in those files.

" Because Rails knows the relationship between filenames and class names,

require is normally not necessary in a Rails application. Instead, the first time you

reference a class or module that isn’t known, Rails uses the naming

conventions to convert the class name to a filename and tries to load that file

behind the scenes.

8 - DAWeb

Grouping Controllers into Modules

" Rails does this using a simple naming convention.

! If an incoming request has a controller named admin/book, Rails will look for the

controller called book_controller.rb in the directory app/controllers/admin.

! Imagine that our program has two such groups of controllers (say, admin/xxx and

content/xxx) and that both groups define a book controller. There’d be a file called

book_controller.rb in both the admin and content subdirectories of app/

controllers. If Rails took no further steps, these two classes would clash.

8 - DAWeb

Grouping Controllers into Modules

" Imagine that our program has two such groups of controllers (say, admin/xxx and

content/xxx) and that both groups define a book controller. There’d be a file called

book_controller.rb in both the admin and content subdirectories of app/

controllers. If Rails took no further steps, these two classes would clash.

" The templates for these controllers appear in subdirectories of app/views. Thus,

the view template corresponding to this request:

! http://my.app/admin/book/edit/1234

" will be in this file:

! app/views/admin/book/edit.html.erb

"

Ruby on Rails

8 – DAWeb

Rails Model Support: “Active Record”

62

8 - DAWeb

Rails Model Support: “Active Record”

" Active Record is the object-relational mapping (ORM) layer supplied with Rails. It

is the part of Rails that implements your application’s model.

! Map database tables to classes;

! Rows correspond to objects of the class;

! Within that object, attributes are used to get and set the individual columns.

! A set of class-level methods that perform table-level operations. Examples: find,

where, new, etc..

! Instance methods that perform operations on the individual rows. Example: save.

" By relying on convention and starting with sensible defaults, Active Record

minimizes the amount of configuration that developers perform. Table and class

naming rules, PK and FK attributes, etc.

8 - DAWeb

Naming Conventions

" Ruby conventions

! Variable names where the letters are all lowercase and words are separated by

underscores (ex: order_status).

! Classes and modules are named differently: there are no underscores, and each

word in the phrase (including the first) is capitalized (ex: LineItem).

" Rails conventions

! Table names are like variable names. Rails also assumes that table names are always

plural (ex: orders and third_parties).

! Files are named in lowercase with underscores.

8 - DAWeb

Naming Conventions

" Ex: class whose name is LineItem (Ruby convention). Rails would automatically

deduce the following:

! That the corresponding database table will be called line_items. That’s the class

name, converted to lowercase, with underscores between the words and pluralized.

! Rails would also know to look for the class definition in a file called line_item.rb (in

the app/models directory).

8 - DAWeb

Naming Conventions: Special cases

" You can add to Rails’ understanding of the idiosyncrasies and inconsistencies of the

English language by modifying the inflection file provided:

" If you have legacy tables you have to deal with, you can control the table name

associated with a given model by setting the table_name for a given class:

8 - DAWeb

Rails Model Support: generating a model

! rails new app

! creates all the necessary folders and file to start your application

! rake db:create

! creates your development and test SQLite3 databases inside the db/ folder

! rails generate model Student

 name:string student_number:integer status:string foto_url:string

! creates:

− a migration: db/migrate/20121117210433_create_students.rb

− a model: app/models/student.rb

− a test unit folder with:

" test/unit/student_test.rb

" test/fixtures/students.yml

Migration

Model

Unit Tests

Fixtures

8 - DAWeb

Rails Model Support: generating a model

! rails generate scaffold Student

 name:string student_number:integer status:string foto_url:string

! creates all the previous stuff and controller and views to respond to the CRUD operations

Migration

Model
Unit Tests

Fixtures

8 - DAWeb

Migrations

" Migrations are a convenient way to alter the database in a structured and

organised manner, without editing SQL.

" Active Record tracks which migrations have already been run so all you have

to do is update your source and run rake db:migrate.

" It will also update your db/schema.rb file to match the structure of your

database.

" Migrations also allow you to describe these transformations using Ruby.

" The great thing about this is that (like most of Active Record’s functionality) it

is database independent.

" For example you could use SQLite3 in development, but MySQL in production.

8 - DAWeb

" Adds a table called products with a string column called name and a text column called description;

" A primary key column called id will also be added, however since this is the default we do not need to

ask for this;

" The timestamp columns created_at and updated_at which Active Record populates automatically will

also be added;

" Reversing this migration is as simple as dropping the table.

Migrations are ruby classes

8 - DAWeb

Migrations

8 - DAWeb

Migrations

8 - DAWeb

Migrations: supported data types

8 - DAWeb

Migrations: supported data types

8 - DAWeb

Migrations: supported data types

8 - DAWeb

Migrations: creating a migration

" The model and scaffold generators will create migrations appropriate for

adding a new model.

! By default, the generated migration will include t.timestamps (which creates the

updated_at and created_at columns that are automatically populated by Active Record)

" Creating a Standalone Migration.

rails generate model NAME [field[:type][:index] field[:type][:index]] [options]

8 - DAWeb

Migrations: creating a migration

" Creating a Standalone Migration

! If the migration name is of the form “AddXXXToYYY” or “RemoveXXXFromYYY” and is

followed by a list of column names and types then a migration containing the appropriate

add_column and remove_column statements will be created.

8 - DAWeb

Migrations: creating a migration

" Creating a Standalone Migration

! If the migration name is of the form “AddXXXToYYY” or “RemoveXXXFromYYY” and is

followed by a list of column names and types then a migration containing the appropriate

add_column and remove_column statements will be created.

8 - DAWeb

Migrations: running migrations

" rake db:migrate.

! In its most basic form it just runs the up or change method for all the migrations

that have not yet been run. If there are no such migrations, it exits. It will run

these migrations in order based on the date of the migration.

! Note that running the db:migrate also invokes the db:schema:dump task, which

will update your db/schema.rb file to match the structure of your database.

" rake db:rollback

! This will run the down method from the latest migration. If you need to undo

several migrations you can provide a STEP parameter:

8 - DAWeb

Migrations and the Schema.db

! rails generate model Student

 name:string student_number:integer status:string foto_url:string

Migration

Model

! rake db:migrate

8 - DAWeb

Migrations and the Schema.db

! rake db:migrate

! rails console

Loading development environment (Rails 3.2.9.rc2)

>> Student.column_names

=> ["id", "name", "student_number", "status", "foto_url", "created_at", "updated_at"]

8 - DAWeb

Migrations and the Schema.db

! rails console

Loading development environment (Rails 3.2.9.rc2)

>> Student.column_names

=> ["id", "name", "student_number", "status", "foto_url", "created_at", "updated_at"]

>> Student.columns_hash["status"]

=> #<ActiveRecord::ConnectionAdapters::SQLiteColumn:0x10fa807e0 @primary=false,

@scale=nil, @default=nil, @sql_type="varchar(255)", @coder=nil, @name="status",

@limit=255, @type=:string, @precision=nil, @null=true>

Further reading about migrations on

http://guides.rubyonrails.org/migrations.html

Chapter 23 of Agile Web Development with Rails (4th Edition)

Ruby on Rails

8 – DAWeb

Active Record Associations

83

8 - DAWeb

The purpose of Active Record Associations

" Expressiveness

" They make common operations simpler and easier in your code. Consider a simple

Rails application that includes a model for customers and a model for orders. Each

customer can have many orders.

! Without associations:

− Model

− Add a new order for an existing customer

− Deleting a customer, and ensuring that all of
its orders get deleted as well

8 - DAWeb

The purpose of Active Record Associations

" With Active Record Associations:

! Model

! Add a new order for an existing customer

! Deleting a customer, and ensuring that all of its orders get deleted as well

8 - DAWeb

The Types of Associations

" An association is a connection between two Active Record models.

" Rails supports six types of associations

! belongs_to

! has_one

! has_many

! has_many :through

! has_one :through

! has_and_belongs_to_many

8 - DAWeb

" Each instance of the declaring model “belongs to” one instance of the other model.

" A foreign key is placed on the origin model. The name of the foreign key is the name of the

destination model followed by _id

Rails types of associations: belongs_to

8 - DAWeb

" Each instance of a model contains or possesses one instance of another model.

" A foreign key is placed on the destination model.

Rails types of associations: has_one

8 - DAWeb

" one-to-one relationship between two models.

" The has_one relationship says that one of something is yours – that is, that something

points back to you. For example, it makes more sense to say that a supplier owns an

account than that an account owns a supplier.

Choosing Between belongs_to and has_one

Supplier Account
has_one

belongs_to
supplier_id(FK)

8 - DAWeb

" This association indicates that each instance of the model has zero or more instances of

another model. You’ll often find this association on the “other side” of a belongs_to

association

Rails types of associations: has_many

8 - DAWeb

" A has_many :through association is often used to set up a many-to-many connection with another

model. This association indicates that the declaring model can be matched with zero or more instances of

another model by proceeding through a third model.

Rails types of associations: has_many :through

8 - DAWeb

" The has_many :through association is also useful for setting up “shortcuts” through nested has_many

associations. For example, if a document has many sections, and a section has many paragraphs, you

may sometimes want to get a simple collection of all paragraphs in the document.

Rails types of associations: has_many :through

8 - DAWeb

" A has_one :through association sets up a one-to-one connection with another model. This association

indicates that the declaring model can be matched with one instance of another model by proceeding

through a third model.

Rails types of associations: has_one :through

8 - DAWeb

" A has_and_belongs_to_many association creates a direct many-to-many connection with another

model, with no intervening model.

Types of associations: has_and_belongs_to_many

8 - DAWeb

" Rails offers two different ways to declare a many-to-many relationship between models. The simpler

way is to use has_and_belongs_to_many, which allows you to make the association directly

Between has_many :through and has_and_belongs_to_many

8 - DAWeb

" The second way to declare a many-to-many relationship is to use has_many :through. This makes the

association indirectly, through a join model:

" You should set up a has_many :through relationship if you need to work with the relationship model as

an independent entity. If you don’t need to do anything with the relationship model, it may be simpler to set

up a has_and_belongs_to_many relationship.

" You should use has_many :through if you need validations, callbacks, or extra attributes on the join model.

Between has_many :through and has_and_belongs_to_many

8 - DAWeb

" With polymorphic associations, a model can belong to more than one other model, on a single association.

" For example, you might have a picture model that belongs to either an employee model or a product

model. Here’s how this could be declared:

" From an instance of the Employee model, you can retrieve a collection of pictures: @employee.pictures.

" Similarly, you can retrieve @product.pictures.

Polymorphic Associations

8 - DAWeb

" If you have an instance of the Picture model, you can get to its parent via @picture.imageable. To make this

work, you need to declare both a foreign key column and a type column in the model that declares the

polymorphic interface:

" This migration can be simplified by using the t.references form:

Polymorphic Associations

8 - DAWeb

" A model that should have a relation to itself.

" For example, you may want to store all employees in a single database model, but be able to trace

relationships such as between manager and subordinates

" You can retrieve @employee.subordinates and @employee.manager.

Self Joins

8 - DAWeb

" http://guides.rubyonrails.org/association_basics.html

"

Readings on Active Record Associations

Ruby on Rails

8 – DAWeb

Active Record Query Interface

101

8 - DAWeb

Retrieving Objects from the Database

" Active Record provides several finder methods. Each finder method allows you to

pass arguments:

" All of the above methods return an instance of ActiveRecord::Relation.

" The primary operation of Model.find(options) can be summarized as:

8 - DAWeb

Retrieving a Single Object

" Using a Primary Key

" First

" Last

" First!

" Last!

Model.first! raises RecordNotFound if no matching record is found.

Model.last! raises RecordNotFound if no matching record is found.

8 - DAWeb

Retrieving Multiple Objects

" Using Multiple Primary Keys

! Model.find(array_of_primary_key) accepts an array of primary keys, returning

an array containing all of the matching records for the supplied primary keys.

! Model.find(array_of_primary_key) will raise an ActiveRecord::RecordNotFound

exception unless a matching record is found for all of the supplied primary keys.

#"Find"the"clients"with"primary"keys"1"and"10.
client"="Client.find([1,"10])"#"Or"even"Client.find(1,"10)
#"=>"[#<Client"id:"1,"first_name:""Lifo">,"#<Client"id:"10,"first_name:""Ryan">]

8 - DAWeb

Retrieving Multiple Objects

" Retrieving Multiple Objects in Batches

! Motivation

! find_each

! find_in_batches

#"This"is"very%inefficient"when"the"users"table"has"thousands"of"rows.
User.all.each"do"|user|
""NewsLetter.weekly_deliver(user)
end

User.find_each"do"|user|
""NewsLetter.weekly_deliver(user)
end

#"Give"add_invoices"an"array"of"1000"invoices"at"a"time
Invoice.find_in_batches(:include"=>":invoice_lines)"do"|invoices|
""export.add_invoices(invoices)
end

retrieves a batch of records and then yields
each record to the block individually as a
model

retrieves a batch of records and then yields
the entire batch to the block as an array of
models.

8 - DAWeb

Retrieving Multiple Objects

" Find_each

! The find_each method retrieves a batch of records and then yields each record to the

block individually as a model.

! will retrieve 1000 records (the current default for both find_each and find_in_batches)

and then yield each record individually to the block as a model.

! This process is repeated until all of the records have been processed

! Options for find_each

− :batch_size

− :start

! By default, records are fetched in ascending order of the primary key

User.find_each"do"|user|
""NewsLetter.weekly_deliver(user)
end

User.find_each(:start"=>"2000,":batch_size"=>"5000)"do"|user|
""NewsLetter.weekly_deliver(user)
end

8 - DAWeb

Conditions

" The where method allows you to specify conditions to limit the records returned,

representing the WHERE-part of the SQL statement. Conditions can either be

specified as a string, array, or hash.

! Pure String Conditions

− Building your own conditions as pure strings can leave you vulnerable to SQL

injection exploits.

! Array Conditions

− A query string with “?” and an array of values to be used in the placeholders “?”

! Hash Conditions

− With hash conditions, you pass in a hash with keys of the fields you want

conditionalised and the values of how you want to conditionalise them

Client.where("orders_count = '2'")

8 - DAWeb

Conditions: array conditions

" Active Record will go through the first element in the conditions value and any

additional elements will replace the question marks (?) in the first element.

" If you want to specify multiple conditions:

" Placeholder Conditions

! Instead of using ? you can also specify keys/values hash in your array conditions:

Client.where("orders_count = ?", params[:orders])

Client.where("orders_count = ? AND locked = ?", params[:orders], false)

Client.where("created_at >= :start_date AND created_at <= :end_date",
 {:start_date => params[:start_date], :end_date => params[:end_date]})

8 - DAWeb

Conditions: array conditions

" Range Conditions

! You can use the conditions option coupled with the BETWEEN SQL statement

Client.where(:created_at => (params[:start_date].to_date)..(params[:end_date].to_date))

SELECT "clients".* FROM "clients"
WHERE ("clients"."created_at" BETWEEN '2010-09-29' AND '2010-11-30')

8 - DAWeb

Conditions: hash conditions

" Active Record also allows you to pass in hash conditions which can increase the

readability of your conditions syntax. With hash conditions, you pass in a hash with

keys of the fields you want conditionalised and the values of how you want to

conditionalise them:

! Equality Conditions

! Range Conditions

! Subset Conditions

Client.where(:locked => true)

Client.where('locked' => true)

Client.where(:created_at => (Time.now.midnight - 1.day)..Time.now.midnight)

Client.where(:orders_count => [1,3,5])

8 - DAWeb

Ordering

" To retrieve records from the database in a specific order, you can use the order

method.

8 - DAWeb

Selecting Specific Fields

" By default, Model.find selects all the fields from the result set using select *. To

select only a subset of fields from the result set, you can specify the subset via the

select method. For example, to select only viewable_by and locked columns:

" Be careful because this also means you’re initializing a model object with only the

fields that you’ve selected.

" If the select method is used, all the returning objects will be read only.

" If you would like to only grab a single record per unique value in a certain field, you

can use uniq:

Client.select("viewable_by, locked")

Client.select(:name).uniq

8 - DAWeb

Limit and Offset

Client.limit(5) SELECT * FROM clients LIMIT 5

Client.limit(5).offset(30) SELECT * FROM clients LIMIT 5 OFFSET 30

8 - DAWeb

Group

Order.select("date(created_at) as ordered_date,
 sum(price) as total_price").group("date(created_at)")

SELECT date(created_at) as ordered_date,
 sum(price) as total_price
FROM orders
GROUP BY date(created_at)

8 - DAWeb

Joining Tables

! Active Record provides a finder method called joins for specifying JOIN clauses on the

resulting SQL. There are multiple ways to use the joins method.

! Using a String SQL Fragment

! Using Array/Hash of Named Associations

− Active Record lets you use the names of the associations defined on the model as a

shortcut for specifying JOIN clause for those associations when using the joins method.

Client.joins('LEFT OUTER JOIN addresses ON addresses.client_id = clients.id')

SELECT clients.*
FROM clients LEFT OUTER JOIN addresses ON addresses.client_id = clients.id

8 - DAWeb

Joining Tables: Using Array/Hash of Named Associations

" Using Array/Hash of Named Associations

! Active Record lets you use the names of the associations defined on the model as a shortcut

for specifying JOIN clause for those associations when using the joins method.

Category

belongs_to has_many

Comment

has_many
belongs_to

Tag

Post

has_many

Guest

belongs_tohas_one

class Category < ActiveRecord::Base
 has_many :posts
end

class Post < ActiveRecord::Base
 belongs_to :category
 has_many :comments
 has_many :tags
end

class Comment < ActiveRecord::Base
 belongs_to :post
 has_one :guest
end

class Guest < ActiveRecord::Base
 belongs_to :comment
end

class Tag < ActiveRecord::Base
 belongs_to :post
end

8 - DAWeb

Joining Tables: Using Array/Hash of Named Associations

" Joining a Single Association

! Return a Category object for all categories with posts

! Note that you will see duplicate categories if more than one post has the same category.

Category.joins(:posts)

SELECT categories.*
FROM categories
INNER JOIN posts ON posts.category_id = categories.id

class Category < ActiveRecord::Base
 has_many :posts
end

Category.joins(:post).select(“distinct(categories.id)”)

8 - DAWeb

Joining Tables: Using Array/Hash of Named Associations

" Joining Multiple Associations

! Return all posts that have a category and at least one comment

! Note again that posts with multiple comments will show up multiple times.

Post.joins(:category, :comments)

SELECT posts.*
FROM posts
INNER JOIN categories ON posts.category_id = categories.id
INNER JOIN comments ON comments.post_id = posts.id

class Post < ActiveRecord::Base
 belongs_to :category
 has_many :comments
 has_many :tags
end

Post.joins(:category, :comments).select(“distinct(posts.id)”)

8 - DAWeb

Joining Tables: Using Array/Hash of Named Associations

" Joining Nested Associations (Single Level)

! Return all posts that have a comment made by a guest

Post.joins(:comments => :guest)

SELECT posts.*
FROM posts
INNER JOIN comments ON comments.post_id = posts.id
INNER JOIN guests ON guests.comment_id = comments.id

class Post < ActiveRecord::Base
 belongs_to :category
 has_many :comments
 has_many :tags
end

class Comment < ActiveRecord::Base
 belongs_to :post
 has_one :guest
end

8 - DAWeb

Joining Tables: Using Array/Hash of Named Associations

" Joining Nested Associations (Multiple Level)

! Return all posts that have a comment made by a guest

Category.joins(:posts => [{:comments => :guest}, :tags])

SELECT categories.*
FROM categories
INNER JOIN posts ON posts.category_id = categories.id
INNER JOIN comments ON comments.post_id = posts.id
INNER JOIN guests ON guests.comment_id = comments.id
INNER JOIN tags ON tags.post_id = posts.id

8 - DAWeb

Joining Tables: Specifying Conditions on the Joined Tables

" You can specify conditions on the joined tables using the regular Array and String

conditions.

" Hash conditions provides a special syntax for specifying conditions for the joined tables

time_range = (Time.now.midnight - 1.day)..Time.now.midnight

Client.joins(:orders).where('orders.created_at' => time_range)

time_range = (Time.now.midnight - 1.day)..Time.now.midnight

Client.joins(:orders).where(:orders => {:created_at => time_range})

8 - DAWeb

Eager Loading Associations

" Consider the following code, which finds 10 clients and prints their postcodes:

" The above code executes 1 (to find 10 clients) + 10 (one per each client to load the

address) = 11 queries in total.

" The above code will execute just 2 queries, as opposed to 11 queries in the previous case

clients = Client.limit(10)

clients.each do |client|
 puts client.address.postcode
end

clients = Client.includes(:address).limit(10)

clients.each do |client|
 puts client.address.postcode
end

8 - DAWeb

Eager Loading Multiple Associations

" Active Record lets you eager load any number of associations with a single Model.find

call by using an array, hash, or a nested hash of array/hash with the includes method

! Array of Multiple Associations

! Nested Associations Hash

Post.includes(:category, :comments)

Category.includes(:posts => [{:comments => :guest}, :tags]).find(1)

This loads all the posts and the associated category and comments for each post.

This will find the category with id 1 and eager load all of the associated posts, the associated posts’ tags
and comments, and every comment’s guest association

8 - DAWeb

Scopes

" Scoping allows you to specify commonly-used ARel queries which can be referenced as

method calls on the association objects or models;

" With these scopes, you can use every method previously covered such as where, joins

and includes;

" All scope methods will return an ActiveRecord::Relation object which will allow for

further methods (such as other scopes) to be called on it.

" We can call a scope on either the class or on an association consisting of Post objects

class Post < ActiveRecord::Base
 scope :published, where(:published => true)
 scope :published_and_commented, published.and(self.arel_table[:comments_count].gt(0))
end

Post.published # => [published posts]

category = Category.first
category.posts.published # => [published posts belonging to this category]

8 - DAWeb

Dynamic Finders

" For every field (also known as an attribute) you define in your table, Active Record

provides a finder method. If you have a field called first_name on your Client model for

example, you get find_by_first_name and find_all_by_first_name for free from

Active Record

" You can specify an exclamation point (!) on the end of the dynamic finders to get them to

raise an ActiveRecord::RecordNotFound error if they do not return any records.

" If you have a locked field on the Client model, you also get find_by_locked and

find_all_by_locked methods. If you want to find both by name and locked, you can

chain these finders together by simply typing “and” between the fields

Client.find_by_first_name_and_locked("Ryan", true)

Ruby on Rails

8 – DAWeb

Model Validations

126

8 - DAWeb

The big picture for Validation

" During the normal operation of a Rails application, objects may be created, updated,

and destroyed. Active Record provides hooks into this object life cycle so that you

can control your application and its data.

" Validations allow you to ensure that only valid data is stored in your database.

Callbacks and observers allow you to trigger logic before or after an alteration of

an object’s state.

" There are several ways to validate data before it is saved into your database,

including native database constraints, client-side validations, controller-level

validations, and model-level validations.

8 - DAWeb

Validation by Database constraints

" Database constraints and/or stored procedures make the validation mechanisms

database-dependent and can make testing and maintenance more difficult.

" However, if your database is used by other applications, it may be a good idea to

use some constraints at the database level.

" Additionally, database-level validations can safely handle some things (such as

uniqueness in heavily-used tables) that can be difficult to implement otherwise.

8 - DAWeb

Validation by Client-side validations

" Client-side validations can be useful, but are generally unreliable if used alone.

! If they are implemented using JavaScript, they may be bypassed if JavaScript is turned

off in the user’s browser.

" However, if combined with other techniques, client-side validation can be a

convenient way to provide users with immediate feedback as they use your site.

8 - DAWeb

Validation at Controller-level or Model-level

" Controller-level validations can be tempting to use, but often become unwieldy and

difficult to test and maintain. Whenever possible, it’s a good idea to keep your

controllers skinny, as it will make your application a pleasure to work with in the

long run.

" Model-level validations are the best way to ensure that only valid data is saved

into your database. They are database agnostic, cannot be bypassed by end

users, and are convenient to test and maintain. Rails makes them easy to use,

provides built-in helpers for common needs, and allows you to create your own

validation methods as well.

8 - DAWeb

When Does Validation Happen?

" Two kinds of Active Record objects: those that correspond to a row inside your

database and those that do not. When you create a fresh object, for example

using the new method, that object does not belong to the database yet

" Creating and saving a new record will send an SQL INSERT operation to the

database. Updating an existing record will send an SQL UPDATE operation instead.

Validations are typically run before these commands are sent to the database.

If any validations fail, the object will be marked as invalid and Active Record will not

perform the INSERT or UPDATE operation

8 - DAWeb

When Does Validation Happen?

8 - DAWeb

valid? and invalid?

8 - DAWeb

errors[]

8 - DAWeb

Validation

" No product should be allowed in the database if it has an empty title or description

field, an invalid URL for the image, or an invalid price.

! validates :title, :description, :image_url, :presence => true

8 - DAWeb

Validation

" We’d also like to validate that the price is a valid, positive number.

! validates :price, :numericality => {:greater_than_or_equal_to => 0.01}

8 - DAWeb

Validation

" Each product has a unique title.

!

" URL entered for the image is valid.

!

validates :title, :uniqueness => true

validates :image_url, :format => {
 :with => %r{\.(gif|jpg|png)$}i,
 :message => 'must be a URL for GIF, JPG or PNG image.'
}

The image URL looks reasonable.

8 - DAWeb

Model Validation

8 - DAWeb

Validation Helpers

" acceptance: Validates that a checkbox on the user interface was checked when a form was

submitted. This is typically used when the user needs to agree to your application’s terms of service,

confirm reading some text, or any similar concept. This validation is very specific to web applications

and this ‘acceptance’ does not need to be recorded anywhere in your database (if you don’t have a

field for it, the helper will just create a virtual attribute).

" validates_associated: You should use this helper when your model has associations with other

models and they also need to be validated.

8 - DAWeb

Validation Helpers

" confirmation: You should use this helper when you have two text fields that should receive exactly

the same content. For example, you may want to confirm an email address or a password. This

validation creates a virtual attribute whose name is the name of the field that has to be confirmed with

“_confirmation” appended.

8 - DAWeb

Validation Helpers

" exclusion: This helper validates that the attributes’ values are not included in a given set. In fact, this

set can be any enumerable object.

" format: This helper validates the attributes’ values by testing whether they match a given regular

expression, which is specified using the :with option.

8 - DAWeb

Validation Helpers

" inclusion: This helper validates that the attributes’ values are included in a given set. In fact, this set

can be any enumerable object.

" length: This helper validates the length of the attributes’ values. It provides a variety of options, so

you can specify length constraints in different ways.

8 - DAWeb

Validation Helpers

" numericality: This helper validates that your attributes have only numeric values. By default, it will

match an optional sign followed by an integral or floating point number. To specify that only integral

numbers are allowed set :only_integer to true.

" other contraints:

! :greater_than, :greater_than_or_equal_to,

! :equal_to,

! :less_than, :less_than_or_equal_to,

! :odd, :even

8 - DAWeb

Validation Helpers

" presence: This helper validates that the specified attributes are not empty. It uses the blank? method

to check if the value is either nil or a blank string, that is, a string that is either empty or consists of

whitespace.

" If you want to be sure that an association is present, you’ll need to test whether the foreign key used

to map the association is present, and not the associated object itself.

" Since false.blank? is true, if you want to validate the presence of a boolean field you should use

validates :field_name, :inclusion => { :in => [true, false] }.

8 - DAWeb

Validation Helpers

" uniqueness: This helper validates that the attribute’s value is unique right before the object gets

saved. It does not create a uniqueness constraint in the database, so it may happen that two different

database connections create two records with the same value for a column that you intend to be

unique. To avoid that, you must create a unique index in your database.

8 - DAWeb

Validation Helpers

" validates_with: This helper passes the record to a separate class for validation.

" validates_each: This helper validates attributes against a block. It doesn’t have a predefined

validation function. You should create one using a block, and every attribute passed to

validates_each will be tested against it.

8 - DAWeb

Other topics on validation

" Check on:

! http://guides.rubyonrails.org/active_record_validations_callbacks.html

" Common Validation Options: :allow_nil, :allow_blank, :on

" Conditional Validation

" Performing Custom Validations

" Working with Validation Errors

" Displaying Validation Errors in the View

" Callbacks

" Observers

8 - DAWeb

Other topics on validation

" Callbacks

! Callbacks are methods that get called at certain moments of an object’s life cycle. With

callbacks it’s possible to write code that will run whenever an Active Record object is

created, saved, updated, deleted, validated, or loaded from the database.

" Observers

! Observers are similar to callbacks, but with important differences. Whereas callbacks

can pollute a model with code that isn’t directly related to its purpose, observers allow

you to add the same functionality outside of a model. For example, it could be argued

that a User model should not include code to send registration confirmation emails.

Whenever you use callbacks with code that isn’t directly related to your model,

you may want to consider creating an observer instead.

Ruby on Rails

8 – DAWeb

Sample Application: Depot

149

8 - DAWeb

Application overview

" Two different roles or actors: the buyer and the seller:

" The buyer uses Depot to browse the products we have to sell, select some to

purchase, and supply the information needed to create an order.

" The seller uses Depot to maintain a list of products to sell, to determine the orders

that are awaiting shipping, and to mark orders as shipped.

8 - DAWeb

Page Flow: buyer

8 - DAWeb

Page Flow: seller

8 - DAWeb

Data: Product, order, buyer and seller

8 - DAWeb

Creating the application

" Creating the Products Maintenance Application

! creating a rails applications

! creating the Database

! generating the Scaffold

! applying the Migration

! seeing the List of Products

! adding products

! adding test data

! improving the default view of list of products

!

rails new depot

rails generate scaffold Product title:string
 description:text image_url:string price:decimal

rails server

rake db:migrate

rake db:seed

8 - DAWeb

Creating the application and generating the Scaffold

rails new depot rails generate scaffold Product title:string
 description:text image_url:string price:decimal

8 - DAWeb

Generating the Scaffold

8 - DAWeb

Generating the Scaffold

rails generate scaffold Product title:string
 description:text image_url:string price:decimal

8 - DAWeb

Generating the Scaffold

rails generate scaffold Product title:string
 description:text image_url:string price:decimal

rails db:migrate

8 - DAWeb

Generating the Scaffold

rails generate scaffold Product title:string
 description:text image_url:string price:decimal

8 - DAWeb

Generating the Scaffold

8 - DAWeb

Generating the Scaffold

8 - DAWeb

Generating the Scaffold

8 - DAWeb

Generating the Scaffold

8 - DAWeb

rails server - http://localhost:3000/products

products_controller.rb

index.html.erb

8 - DAWeb

rails server - http://localhost:3000/products

products_controller.rb

index.html.erb

8 - DAWeb

rails server - http://localhost:3000/products/new

products_controller.rb

new.html.erb

_form.html.erb

8 - DAWeb

rails server - http://localhost:3000/products/new

_form.html.erb

8 - DAWeb

rails server - http://localhost:3000/new

_form.html.erb

8 - DAWeb

rails server - http://localhost:3000/products/ POST

products_controller.rb

8 - DAWeb

Creating the application

" Creating the Products Maintenance Application

! creating a rails applications

! creating the Database

! generating the Scaffold

! applying the Migration

! seeing the List of Products

! adding products

! adding test data

! improving the default view of list of products

! ...

rails new depot

rails generate scaffold Product title:string
 description:text image_url:string price:decimal

rails server

rake db:migrate

rake db:seed

8 - DAWeb

Adding test data

8 - DAWeb

Adding test data

8 - DAWeb

Adding test data

8 - DAWeb

Improving the default view of list of products

" Creating the Products Maintenance Application

! creating a rails applications

! creating the Database

! generating the Scaffold

! applying the Migration

! seeing the List of Products

! adding products

! adding test data

! improving the default view of list of products

! ...

rails new depot

rails generate scaffold Product title:string
 description:text image_url:string price:decimal

rails server

rake db:migrate

rake db:seed

8 - DAWeb

Improving the default view of list of products

" CSS

" Images

" Modifying the template

8 - DAWeb

Improving the default view of list of products

" Images

" CSS

" <div id="product_list">

" Classes

" list_line_odd, list_line_even

" list_description

" list_actions

8 - DAWeb

Improving the default view of list of products

removed the table headers

- definition: dl, dt, dd
- use of helper tuncate and
 strip_tags

http://localhost:3000/products/id,
GET

http://localhost:3000/products/id/edit
GET

http://localhost:3000/products/id
DELETE

8 - DAWeb

Managing your development process

" Data and DataBase

!

!

!

" Version Control

! GIT

rake db:rollback

rake db:migrate

rake db:seed

Ruby on Rails

8 – DAWeb

Testing

179

8 - DAWeb

rake test

Joao-Moura-Pires-MacBook-Pro:depot joaomp$ rake test
Loaded suite /Library/Ruby/Gems/1.8/gems/rake-0.9.2.2/lib/rake/rake_test_loader
Started

Finished in 0.000163 seconds.

0 tests, 0 assertions, 0 failures, 0 errors
Loaded suite /Library/Ruby/Gems/1.8/gems/rake-0.9.2.2/lib/rake/rake_test_loader
Started
F.....F
Finished in 0.349474 seconds.

 1) Failure:
test_should_create_product(ProductsControllerTest) [test/functional/
products_controller_test.rb:20]:
"Product.count" didn't change by 1.
<3> expected but was
<2>.

 2) Failure:
test_should_update_product(ProductsControllerTest) [test/functional/
products_controller_test.rb:39]:
Expected response to be a <:redirect>, but was <200>.

7 tests, 9 assertions, 2 failures, 0 errors
Errors running test:functionals!

is for the unit, functional, and integration tests that Rails generates along with the scaffolding.

8 - DAWeb

rake test is for the unit, functional, and integration tests that Rails generates along with the scaffolding.

8 - DAWeb

rake test is for the unit, functional, and integration tests that Rails generates along with the scaffolding.

8 - DAWeb

Fixtures

" Fixtures are a way of organizing data that you want to test against; in short, sample data.

" They are stored in YAML files, one file per model, which are placed in the directory

appointed by ActiveSupport::TestCase.fixture_path=(path) (this is automatically configured

for Rails, so you can just put your files in <your-rails-app>/test/fixtures/).

" The fixture file ends with the .yml file extension (Rails example: <your-rails-app>/test/

fixtures/web_sites.yml). The format of a fixture file looks like this:
products.yml

8 - DAWeb

Fixtures

" Read:

" http://api.rubyonrails.org/classes/ActiveRecord/Fixtures.html

" Other topics

" Ordered fixtures, use the omap YAML type

" Dynamic fixtures with ERB

" Transactional Fixtures

" Advanced Fixtures

8 - DAWeb

Unit Testing of Models

" Scafolding

" Rails generates tests based on the Test::Unit framework that comes preinstalled with Ruby.

" An assertion is simply a method call that tells the framework what we expect to be true.

" The simplest assertion is the method assert, which expects its argument to be true.

" If it is, nothing special happens. However, if the argument to assert is false, the assertion

fails. The framework will output a message and will stop executing the test method containing the

failure.

products_test.rb

products_helper_test.rb

8 - DAWeb

Unit Testing of Models

" We expect that an empty Product model will not pass validation, so we can express that

expectation by asserting that it isn’t valid.

assert product.invalid?
products_test.rb

rake test:units

8 - DAWeb

Unit Testing of Models

" Validation of the price works the way we expect:

8 - DAWeb

Unit Testing of Models

" Validating that the image URL ends with one of .gif, .jpg, or .png:

8 - DAWeb

Unit Testing of Models: using fixtures

" Our model contains a validation that checks that all the product titles in the database are unique.

" To test this one, we’re going to need to store product data in the database.

" Fixtures

" Each fixture file contains the data for a single model. The name of the fixture file is

significant; the base name of the file must match the name of a database table.

" Rails already created this fixture file when we first created the model:

In the case of the Rails-generated fixture,
the rows are named one and two.

you must use spaces, not tabs, at the start
of each of the data lines, and all the lines
for a row must have the same
indentation.

8 - DAWeb

Unit Testing of Models: using fixtures

" Rails needs to use a test database. If you look in the database.yml file in the config directory, you’ll

notice Rails actually created a configuration for three separate databases:

" db/development.sqlite3 will be our development database.

" db/test.sqlite3 is a test database.

" db/production.sqlite3 is the production database. Our application will use this when we

put it online.

" Each test method gets a freshly initialized table in the test database, loaded from the fixtures

we provide.

products_test.rb

8 - DAWeb

Unit Testing of Models: using fixtures

" Our model contains a validation that checks that all the product titles in the database are unique

" The test assumes that the database already includes a row for the Ruby book. It gets the title of that

existing row using this: products(:ruby).title

products_test.rb

Ruby on Rails

8 – DAWeb

Catalog Display (buyer)

192

8 - DAWeb

Buyer and Seller

Seller

Buyer

product_controller

store_controller

8 - DAWeb

Creating the store controller

" Controller name: store

" Method: index

http://localhost:3000/store/index

8 - DAWeb

Setting the root for the site

http://localhost:3000/store/index

http://localhost:3000/store

http://localhost:3000/

8 - DAWeb

Setting the root for the site

http://localhost:3000/store/index
http://localhost:3000/

depot/config/routes.rb

rm public/index.html

8 - DAWeb

Displaying a simple list of all the products

" Get the list of products out of the database and make it available to the code in the view that will

display the table. store_controller.rb

index.html.erb

8 - DAWeb

Displaying a simple list of all the products

http://localhost:3000/

8 - DAWeb

Displaying a simple list ordered by title

" Default scopes apply to all queries that start with this model.

product.rb

8 - DAWeb

Displaying a simple list ordered by title

http://localhost:3000/

8 - DAWeb

Adding a page Layout

" application.html.erb will be the layout used for all views for all controllers that don’t otherwise

provide a layout.

" By using only one layout, we can change the look and feel of the entire site by editing just one file.

application.html.erb

the content generated by the viewers

8 - DAWeb

Adding a page Layout

application.html.erb

8 - DAWeb

Adding a page Layout

http://localhost:3000/

8 - DAWeb

Adding a page Layout

app/assets/stylesheets/depot.css

8 - DAWeb

Adding a page Layout

http://localhost:3000/

8 - DAWeb

Using a Helper to Format the Price

" we can format the number by:

"

"

8 - DAWeb

Using a Helper to Format the Price

8 - DAWeb

Using a Helper to Format the Price

8 - DAWeb

Functional Testing of Controllers

" The unit testing of models that we did previously seemed straightforward enough. We called a

method and compared what it returned against what we expected it to return.

" But now we are dealing with a server that processes requests and a user viewing responses in a

browser. What we will need is functional tests that verify that the model, view, and controller

work well together.

teste/functional/store_controller_test.rb

8 - DAWeb

Functional Testing of Controllers

" We want also verify that the response contains our layout, our product information, and our number

formatting.

" This test verifies that there are a minimum of four links inside an element with an ID #side,

(layout).

" The next three lines verify that all of our products are correctly displayed.

teste/functional/store_controller_test.rb

These assertio
ns are based on the test

data that we had put inside our fixtures:

8 - DAWeb

Functional Testing of Controllers

8 - DAWeb

Functional Testing of Controllers

8 - DAWeb

Functional Testing of Controllers

Ruby on Rails

8 – DAWeb

Cart Creation (buyer)

214

8 - DAWeb

Cart Creation

8 - DAWeb

Cart creation

" Our application will need to keep track of all the items added to the cart by the

buyer:

" We’ll keep a cart in the database and store its unique identifier, cart.id, in

the session.

" Every time a request comes in, we can recover the identity from the session and

use it to find the cart in the database.

8 - DAWeb

Cart creation

db/schema.rb

8 - DAWeb

Cart creation - Getting from the Session

" We’ll keep a cart in the database and store its unique identifier, cart.id, in the

session.

" Every time a request comes in, we can recover the identity from the session and use

it to find the cart in the database.

" Rails makes the current session look like a hash to the controller,

" so we’ll store the id of the cart in the session by indexing it with the

symbol :cart_id.

8 - DAWeb

Cart creation - Getting from the Session

" Rails makes the current session look like a hash to the controller,

" so we’ll store the id of the cart in the session by indexing it with the

symbol :cart_id.

db/application_controller.rb " The current_cart starts by getting the :cart_id

from the session object and then attempts to

find a cart corresponding to this id.

" If such a cart record is not found, then a new

Cart is created, store the id of the created cart

into the session, and then return the new cart.

" Being current_chart a private method of ApplicationController means that this method

available only to controllers prevents Rails from making it available as an action on the controller.

8 - DAWeb

Cart creation - Connecting Products to Carts

" A cart contains a set of products.

8 - DAWeb

Cart creation - Connecting Products to Carts

" Generate the Rails models and populate the migrations to create the corre- sponding tables:

models/line_item.rb

8 - DAWeb

Cart creation - Connecting Products to Carts

" Generate the Rails models and populate the migrations to create the corresponding tables:

models/line_item.rb

db/schema.rb

models/cart.rb

8 - DAWeb

Cart creation - Connecting Products to Carts

models/line_item.rb

models/cart.rb

" if a table has foreign keys, the corresponding

model should have a belongs_to for each.

8 - DAWeb

Cart creation - Connecting Products to Carts

" Navigation capabilities of the model objects.

" :

models/line_item.rb

models/cart.rb

8 - DAWeb

Cart creation - Connecting Products to Carts

" Add a has_many directive to our Product

models/product.rb

8 - DAWeb

Cart creation - Adding a Button

" To add an Add to Cart button for each product.

" Purpose:

" To add a new line_item

" based on the current cart

" and on the selected product

" link_to links to using HTTP GET.

" button_to links to using the HTTP POST

" URL: line_items_path.

" Which product to add to our cart?

" :product_id option to the line_items_path.

m
et

ho
d

URL

Pa
ra

m
et

er

8 - DAWeb

Cart creation - Adding a Button

views/store/index.html.erb

8 - DAWeb

Cart creation - Adding a Button

8 - DAWeb

Cart creation - Adding a Button

#store .entry form, #store .entry form div {
 display: inline;
}

button_to creates an HTML <form>, and that form contains an HTML <div>.

<form action="/line_items?product_id=2"
class="button_to" method="post">

8 - DAWeb

Cart creation - Adding a Button

line_items_controller.rb (scafold)

8 - DAWeb

Cart creation - Adding a Button

line_items_controller.rb MODIFIED

8 - DAWeb

Cart creation - Adding a Button

line_items_controller.rb MODIFIED

db/application_controller.rb

current_cart method to find (or create)
a cart in the session.

8 - DAWeb

Cart creation - Adding a Button

line_items_controller.rb MODIFIED

use the params object to get the :product_id
parameter from the request.

The params object is important inside Rails applications.
It holds all of the parameters passed in a browser request.

We store the result in a local variable because there is no need to make
this available to the view.

8 - DAWeb

Cart creation - Adding a Button

line_items_controller.rb MODIFIED
+ pass the found product into @cart.line_items.build.
+ new line_item relationship to be built between the
 @cart object and the product.
+ save the resulting line item into an instance variable
 named @line_item.

8 - DAWeb

Cart creation - Adding a Button

line_items_controller.rb MODIFIED

we want to redirect you to the cart instead of back
to the line item itself.

Since the line item object knows how to find the cart
object, all we need to do is add .cart to the method
call.

8 - DAWeb

Cart creation - Adding a Button

views/carts/show.html.erb

8 - DAWeb

Creating a Smarter Cart

" Associating a count with each product in our cart is going to require us to modify the line_items

table.

The two patterns that Rails matches on is add_XXX_to_TABLE and
remove_XXX_from_TABLE where the value of XXX is ignored; what
matters is the list of column names and types that appear after the
migration name.

8 - DAWeb

Creating a Smarter Cart

" Associating a count with each product in our cart is going to require us to modify the line_items

table.

8 - DAWeb

Creating a Smarter Cart

" Now we need a smart add_product method in our Cart, one that checks whether our list of

items already includes the product we’re adding; if it does, it bumps the quantity, and if it doesn’t,

it builds a new LineItem: models/cart.db dynamic finder

For every field (also known as an attribute) you define in your table, Active
Record provides a finder method. If you have a field called first_name on your
Client model for example, you get find_by_first_name and find_all_by_first_name
for free from Active Record.

8 - DAWeb

" We also need to modify the line item controller to make use of this method:

Creating a Smarter Cart

controllers/line_items_controller.db

8 - DAWeb

" How to view the quantity in the Cart:

Creating a Smarter Cart

views/catrs/show.html.erb

8 - DAWeb

Handling Errors

" http://localhost:3000/carts/xpto

Couldn't find Cart with id=xpto

app/controllers/carts_controller.rb:16:in `show'

8 - DAWeb

Handling Errors

" http://localhost:3000/carts/xpto

If the cart cannot be found, Active Record raises a RecordNotFound
exception, which we clearly need to handle.

We’ll take two actions when an exception is raised:
 - First, we’ll log the fact to an internal log file using Rails’
logger facility.2
 - Second, we’ll redisplay the catalog page, along with a short
message to the user (something along the lines of “Invalid cart”) so
they can continue to use our site.

carts_contraoller.rb

8 - DAWeb

Handling Errors

" http://localhost:3000/carts/xpto

We’ll take two actions when an exception is raised:
 - First, we’ll log the fact to an internal log file using Rails’
logger facility.2
 - Second, we’ll redisplay the catalog page, along with a short
message to the user (something along the lines of “Invalid cart”) so
they can continue to use our site.

carts_contraoller.rb

8 - DAWeb

Handling Errors

" http://localhost:3000/carts/xpto

8 - DAWeb

Finishing the Cart

" Implement the “empty cart”

" Calculate the total in the cart

8 - DAWeb

Recommended readings
" From the book “Pragmatic Agile Web Development with Rails (4th Edition) by Sam

Ruby, Dave Thomas and David Hanson, up to page 256.

" Check the main site: http://rubyonrails.org

" http://guides.rubyonrails.org/active_record_validations_callbacks.html

" http://guides.rubyonrails.org/testing.html

" http://guides.rubyonrails.org/association_basics.html

" http://guides.rubyonrails.org/active_record_querying.html

5

